EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks

نویسندگان

  • Norman Poh
  • Samy Bengio
چکیده

Biometric authentication is a process of verifying an identity claim using a person’s behavioural and physiological characteristics. Due to the vulnerability of the system to environmental noise and variation caused by the user, fusion of several biometric-enabled systems is identified as a promising solution. In the literature, various fixed rules (e.g. min, max, median, mean) and trainable classifiers (e.g. linear combination of scores or weighted sum) are used to combine the scores of several base-systems. How exactly do correlation and imbalance nature of base-system performance affect the fixed rules and trainable classifiers? We study these joint aspects using the commonly used error measurement in biometric authentication, namely Equal Error Rate (EER). Similar to several previous studies in the literature, the central assumption used here is that the class-dependent scores of a biometric system are approximately normally distributed. However, different from them, the novelty of this study is to make a direct link between the EER measure and the fusion schemes mentioned. Both synthetic and real experiments (with as many as 256 fusion experiments carried out on the XM2VTS benchmark score-level fusion data sets) verify our proposed theoretical modeling of EER of the two families of combination scheme. In particular, it is found that weighted sum can provide the best generalisation performance when its weights are estimated correctly. It also has the additional advantage that score normalisation prior to fusion is not needed, contrary to the rest of fixed fusion rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Explaining the Success (Or Failure) of Fusion in Biometric Authentication

Combining multiple information sources, typically from several data streams is a very promising approach, both in experiments and to some extents in various real-life applications. A system that uses more than one behavioural and physiological characteristics to verify whether a person is who he/she claims to be is called a multimodal biometric authentication system. Due to lack of large true m...

متن کامل

A Study of the Effects of Score Normalisation Prior to Fusion in Biometric Authentication Tasks

Although the subject of fusion is well studied, the effects of normalisation prior to fusion are somewhat less well investigated. In this study, four normalisation techniques and six commonly used fusion classifiers were examined. Based on 24 (fusion classifiers) as a result of pairing the normalisation techniques and classifiers applied on 32 fusion data sets, 4×6×32 = 768 fusion experiments w...

متن کامل

Biometric Authentication of Fingerprint for Banking Users, Using Stream Cipher Algorithm

Providing banking services, especially online banking and electronic payment systems, has always been associated with high concerns about security risks. In this paper, customer authentication for their transactions in electronic banking has been discussed, and a more appropriate way of using biometric fingerprint data, as well as encrypting those data in a different way, has been suggest...

متن کامل

Multimodal Person Authentication using Qualitative SVM with Fingerprint, Face and Teeth Modalities

Multimodal biometrics systems are becoming increasingly efficient over the unimodal system, especially for the securing handheld devices. However, the challenge with this authentication system is the relative degradation of the biometric modalities involved in the development and test data respectively. To overcome this problem, in this paper we propose a novel Qualitative Support Vector Machin...

متن کامل

A Multimodal Approach for Biometric Authentication with Multiple Classifiers

The paper presents a multimodal approach for biometric authentication, based on multiple classifiers. The proposed solution uses a post-classification biometric fusion method in which the biometric data classifiers outputs are combined in order to improve the overall biometric system performance by decreasing the classification error rates. The paper shows also the biometric recognition task im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005